inhibitor can be effective to reduce activity of PKC δ I and is not effective to reduce the activity of PKC α , PKC β , PKC γ , PKC ε I inhibitor can simultaneously bind the DMQD amino acid sequence within the V3 hinge region of PKC δ I and the active site on the C2 domain of PKC δ I. The PKC δ I disorder can be diabetes, a cancer, an inflammatory, disease obesity, insulin resistance, metabolic syndrome hepatosteatosis, a cardiovascular disease, a neurodegenerative disease or a symptom thereof. The effective amount of the PKC δ I inhibitor can range from about 0.001 micrograms to about 1 g.

[0006] In some aspects, provided herein are methods of reducing adipocyte apoptosis in a subject in need thereof that can include the step of administering a pharmaceutical formulation comprising an effective amount of PKC8I inhibitor to the subject in need thereof, wherein the PKC8I inhibitor is a compound having a Formula as in any one of Formulas 1 and 3-7

Formula 1

HN

HN

NH,

HN

NH

NH

NH

NH

Formula 3

Formula 4

O

N

CH₃

-continued

Formula 5

NH

NH

NH

OH,

CH3

CH3

Formula 6

H₃C CH₃

N
CH₃,

HN
OH

Formula

H₃C OH.

CH₃

N

N

[0007] The PKC δ I inhibitor can be effective to reduce PKC δ I activity in the subject in need thereof. The PKC δ I inhibitor can be effective to reduce PKC δ I activity in an adipocyte in the subject in need thereof. The PKC δ I inhibitor is a compound according to Formula 1. The PKC δ I inhibitor can be effective to reduce the activity of PKC δ I and is not effective to reduce the activity of PKC δ I and is not effective to reduce the activity of PKC δ I, PKC δ III or any combination thereof. The PKC δ I inhibitor can simultaneously bind the DMQD amino acid sequence within the V3 hinge region of PKC δ I and the active site on the C2 domain of PKC δ I. The subject in need thereof can have diabetes, a cancer, an inflammatory, disease obesity, insulin resistance, metabolic syndrome hepatosteatosis, a cardiovascular disease, a neurodegenerative disease or a symptom thereof.

[0008] Also provided herein are pharmaceutical formulations that can have an amount of a PKC δ I inhibitor, wherein the amount can be an effective amount that can reduce PKC δ I activity in a subject, and wherein the PKC δ I inhibitor can be a compound having a Formula as in any one of Formulas 1 and 3-7